丝状真菌Podospora anserina AA11家族裂解多糖单加氧酶基因的鉴定和功能研究

辅助活性蛋白家族(auxiliary activity family, AA family)中的裂解多糖单加氧酶(lytic polysaccharide monooxygenase, LPMO)能催化纤维素、几丁质和淀粉等多种难降解碳水化合物的氧化解聚。尽管目前对LPMO的酶学研究较多,但对LPMO基因失活的研究却鲜有报道。本研究利用同源重组方法定点敲除丝状真菌Podospora anserina中AA11家族的5个LPMO基因PaLPMO11A(Pa_4_4790)、PaLPMO11B(Pa_1_5310)、PaLPMO11C(Pa_2_7购买VP-16840)、 PaLPMO11D(Pa_2_8610)和PaLPMO11E(Pa_3_9420),分别构建了单突变体ΔPaLPMO11A (ΔA)、ΔPaLPMO11B (ΔB)、ΔPaLPMO11C (ΔC)、ΔPaLPMO11D (ΔD)和ΔPaLPMO11E (ΔE),然hexosamine biosynthetic pathway后通过遗传杂交构建所有多基因突变体。通过在不同碳源培养基上的表型分析、DAB和NBT染色以及纤维素酶活测定分析野生型菌株与突变型菌株在生长速率、有性生殖、氧化应激和纤维素降解能力等方面的差异,揭示LPMO11基因在P. anserina菌株的生长发育和木质纤维素点击此处降解过程中的作用。实验结果表明,在不同纤维素碳源上,ΔBΔCΔE、ΔAΔBΔCΔE、ΔAΔCΔDΔE和ΔAΔBΔCΔDΔE突变型菌株的有性生殖能力降低,其余突变型菌株的孢子萌发效率、生长速率和生殖能力几乎没有差异。PaLPMO11家族5个基因的同时缺失,会导致菌株利用各种碳源的能力明显降低、生长速率降低、孢子萌发率降低、子实体数减少、部分子实体发育异常、寿命缩短和降解纤维素的能力显著下降,但仍有野生型45%以上的总纤维素酶活力。上述结果表明,LPMO11基因可能参与P. anserina的生长发育、有性生殖、衰老和纤维素降解过程。本研究为系统阐述丝状真菌P. anserina中木质纤维素降解的调控机制提供参考。