基于自动机器学习的运动过程心电检测算法

心电图(ECG)是一种常规的身体监测手段,通过分析人体在不同状态下心电活动的变化,评估其心血管健康状况。考虑到人体生理特征的差异,以及不同状态下心电活动规律的变化Mindfulness-oriented meditation,如何设计一种自动适应各种场景的心电信号分类模型具有重要的现实意义。该文创新性地将心电信号转化为图像数据,并采用可微分神经网络架构搜索算法(PC-DAPR-171RTS)对不同分布的心电检测数据自动搭建最优神经网络模型,实现了不同场景下心电信号的精准分类。分别在心律失常数据集PhysioNet MITRegorafenib分子式-BIH和诊断性心电图数据集PTB上进行心电信号分类实验,以验证所提方法在不同应用场景下的辨识性能。实验结果表明,与其他方法相比,该文算法具备更高的准确度和更强的鲁棒性,同时,能够应对不同采集设备、实验环境以及被试人群所带来的分类辨识挑战,具备较强的泛化性能。未来,该研究成果有望与新型心电监测设备相结合,实现高效精准的心电检测功能,加速心电检测在更多领域中的落地与应用。